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Notations and Definitions

R denotes an associative ring with unity.

Definitions

An element a in a ring R is

1 invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible
elements is denoted U(R).

2 idempotent if a2 = a, E (R) := {a ∈ R | a2 = a}.
3 nilpotent if ∃n ∈ N \ {0} s.t. an = 0. The set of nilpotent

elements is denoted Nil(R).

4 (M. Chacron) periodic if ∃m < l ∈ N s.t. al = am. Per(R). If
m = 1 we say a is potent.

5 clean if ∃e ∈ E (R),∃u ∈ U(R) s.t. a = e + u. Cl(R).

6 semiclean ∃p ∈ Per(R),∃u ∈ U(R) s.t. a = p + u. Scl(R)

7 strongly clean if a = e + u is clean and ue = eu.
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Properties of periodic elements

The following lemma is part of folklore.

Lemma

Let a ∈ R be periodic say am = al with m < l . We have

1 for all k ∈ N and any j ≥ m, aj = aj+k(l−m).

2 am(l−m) is an idempotent.

3 a is a sum of a potent and a nilpotent element.

4 a is strongly clean.

Proof.

(1) We have am = amal−m = ama2(l−m) = · · · = am+k(l−m) and
hence also aj = aj+k(l−m) for any j ≥ m and all k ∈ N.
(2) Using (1), we have
(am(l−m))2 = am(l−m)+m(l−m) = am(l−m).
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Theorem

Let p =
∑n

i=0 pix
i ∈ R[x ] be such that

1 pl = pm, for some l > m,

2 [p0, pi ] = 0, for every 0 ≤ i ≤ n,

3 (l −m)pi ̸= 0 if pi ̸= 0, for every 0 ≤ i ≤ n.

Then pm
2
= pm

2

0 ∈ R.

The next corollary generalizes a result known for idempotents.

Corollary

If m = 1 in the above theorem, under the same conditions we get
that the potent polynomials p ∈ R[x ] belong to the base ring R.

Remark

The polynomial p(x) = 4x + 1 ∈ (Z/8Z)[x ] is such that
p(x)3 = p(x). This shows that the condition on the coefficients
cannot be omitted.
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Proposition

Let p(x) =
∑n

i=0 pix
i ∈ Per(R[x ]) be such that pip0 = p0pi for

1 ≤ i ≤ n. Suppose there exists a natural number q such that
qpi = 0 for 1 ≤ i ≤ n. Then p − p0 is nilpotent.

Remark

The above results admit generalizations for N-graded rings.
R = ⊕i∈NRi where Ri are additive groups and the product of R is
such that RiRj ⊆ Ri+j . In particular, we can get results on Per(S)
when S = R[x1, . . . , xn].
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The following theorems are classical:

Theorem

A ring R is periodic if and only if the followings hold:

1 R is of positive characteristic,

2 R is strongly clean,

3 The invertible elements of R are roots of unity.

Theorem

A ring R is periodic if and only if R/J(R) is periodic and J(R) is
nil.
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Matrices over periodic rings

Let us mention some important results related to matrices over
periodic rings.

Theorem (A. Bouzidi, A. Cherchem, A. Leroy; 2020)

If R is a periodic ring then Mn(R) is also periodic in the following
cases:

1 R is Artinian.

2 R is right (left) Noetherian and J(R) is nilpotent.

3 R is P.I.
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Definition

A ring R is 2-primal if the set of its nilpotent elements coincide
with the prime radical. i.e. Nil(R) = P(R) = ∩P primeP.

Corollary

If R is 2-primal and
∑

aix
i ∈ Per(R[X ]), then a0 ∈ Per(R) and

ai ∈ Nil(R) for i ≥ 1. Thus in this case we have
Per(R[x ]) ⊆ Per(R) + Nil(R)[x ]x .

Example

Suppose R = Z[y ]/(y2). R is a commutative ring hence
2-primal. Consider 1+ yx ∈ R[x ], 1 is perodic and y is nilpotent.
But (1 + yx)n = 1 + nyx is not periodic for any n ∈ N. This
shows the converse inclusion of the above does not always hold.
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Definition

An element a ∈ R is semiclean if there exist a periodic element
p ∈ R and a unit u ∈ U(R) such that a = p + u. The set Scl(R)
denotes the set of semiclean elements. The ring R is semiclean if
Scl(R) = R.

Proposition

1 Scl(R) + J(R) ⊆ Scl(R).

2 Scl(R[x ]) ∩ R = Scl(R).

3 If R is a domain, then the semiclean elements are units or sum
of two units.
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2-primal

Among the following equivalent statements, 3 and 4 were given by
Kanwar, Leroy, and Matczuk.

Proposition

Let R be a ring, then the following are equivalent:

1 R is 2 primal.

2 R[x ] is 2 primal.

3 Cl(R[x ]) = Cl(R) + Nil(R)[x ]x .

4 U(R[x ]) = U(R) + Nil(R)[x ]x .

5 Scl(R[x ]) = Scl(R) + Nil(R)[x ]x .
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A ring is exchange if the idempotents can be lifted through any
one sided ideal (Nicholson). An abelian exchange is always a clean
(abelian) ring and hence every element is a sum of a central
element and a unit. These rings are called CU.

Definitions

A ring R such that its elements can be written as c + x

1 where c is central and x is invertible is CU (e.g.clean abelian).

2 where c is central and x is nilpotent is CN (e.g. nil clean
abelian).

3 where c is central and x is in J(R) is CJ (e.g J-clean abelian).

We have the following easy relations between these rings.

CN ⇒ CU, CJ ⇒ CU

.
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Examples

(1) Every commutative ring is CJ.
(2) Every homomorphic image of a CJ ring is CJ.
(3) C + J is a subring of R stable by automorphisms of R.
(4) C (R[x ]) + J(R[x ]) = C (R)[x ] + N ′[x ] where N ′ = J(R[x ]) ∩ R
is a nil ideal of R. ( Amitsur’s result, see T.Y.Lam’s book ”first
course” Theorem 5.10).
(5) CJ and CN rings are different notions for examples consider
R = k[[x ]][[t;σ]] where σ is the k-endomorphism of k[[x ]] defined
by σ(x) = x2. The center of R is k and the Jacobson radical of R
is the ideal generated by x and t. Hence R is CJ. But this ring is
not CN since it is a noncommutative domain.
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Let us mention some results related to CJ rings.

1 If R is CJ then R is Dedekind finite.

2 If R is CJ then Nil(R) ⊆ J(R).

3 The subring C + J is a CJ ring.

4 If R[x ] is a CJ ring, then R satisfies the Köthe conjecture.
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THANK YOU !
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