

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

Periodic, semi-clean and CJ elements

Guanglin MA

Nanjing University of Information Science and Technology, China

Joint work with A. Leroy, M. Nasernejad, and Y. Wang

NCRA VIII, Lens August 2023

Lens, August

Guanglin MA Nanjing University of Information Science and Tech Periodic, semi-clean and CJ elements

R denotes an associative ring with unity.

Definitions

э

R denotes an associative ring with unity.

Definitions

An element a in a ring R is

invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).

R denotes an associative ring with unity.

Definitions

- invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).
- ② idempotent if $a^2 = a$, $E(R) := \{a \in R \mid a^2 = a\}$.

R denotes an associative ring with unity.

Definitions

- invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).
- 3 idempotent if $a^2 = a$, $E(R) := \{a \in R \mid a^2 = a\}$.
- onlipotent if ∃n ∈ N \ {0} s.t. aⁿ = 0. The set of nilpotent elements is denoted Nil(R).

R denotes an associative ring with unity.

Definitions

- invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).
- 3 idempotent if $a^2 = a$, $E(R) := \{a \in R \mid a^2 = a\}$.
- Solution if ∃n ∈ N \ {0} s.t. aⁿ = 0. The set of nilpotent elements is denoted Nil(R).
- (M. Chacron) periodic if $\exists m < l \in \mathbb{N}$ s.t. $a^l = a^m$. Per(R). If m = 1 we say a is potent.

R denotes an associative ring with unity.

Definitions

- invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).
- 3 idempotent if $a^2 = a$, $E(R) := \{a \in R \mid a^2 = a\}$.
- onlipotent if ∃n ∈ N \ {0} s.t. aⁿ = 0. The set of nilpotent elements is denoted Nil(R).
- (M. Chacron) periodic if $\exists m < l \in \mathbb{N}$ s.t. $a^l = a^m$. Per(R). If m = 1 we say a is potent.
- **③** clean if $\exists e \in E(R), \exists u \in U(R)$ s.t. a = e + u. Cl(R).

R denotes an associative ring with unity.

Definitions

- invertible if ∃b ∈ R s.t. ab = ba = 1. The set of invertible elements is denoted U(R).
- 3 idempotent if $a^2 = a$, $E(R) := \{a \in R \mid a^2 = a\}$.
- onlipotent if ∃n ∈ N \ {0} s.t. aⁿ = 0. The set of nilpotent elements is denoted Nil(R).
- (M. Chacron) periodic if $\exists m < l \in \mathbb{N}$ s.t. $a^l = a^m$. Per(R). If m = 1 we say a is potent.
- **③** clean if $\exists e \in E(R), \exists u \in U(R)$ s.t. a = e + u. Cl(R).
- **◎** semiclean $\exists p \in Per(R), \exists u \in U(R)$ s.t. a = p + u. Scl(R)
- strongly clean if a = e + u is clean and ue = eu.

The following lemma is part of folklore.

The following lemma is part of folklore.

Lemma

Let $a \in R$ be periodic say $a^m = a^l$ with m < l. We have

9 for all
$$k \in \mathbb{N}$$
 and any $j \ge m$, $a^j = a^{j+k(l-m)}$.

- a^{m(1-m)} is an idempotent.
- a is a sum of a potent and a nilpotent element.

a is strongly clean.

The following lemma is part of folklore.

Lemma

Let $a \in R$ be periodic say $a^m = a^l$ with m < l. We have

9 for all
$$k \in \mathbb{N}$$
 and any $j \ge m$, $a^j = a^{j+k(l-m)}$.

a is a sum of a potent and a nilpotent element.

a is strongly clean.

Proof.

(1) We have $a^m = a^m a^{l-m} = a^m a^{2(l-m)} = \cdots = a^{m+k(l-m)}$ and hence also $a^j = a^{j+k(l-m)}$ for any $j \ge m$ and all $k \in \mathbb{N}$.

Guanglin MA Nanjing University of Information Science and Tech Periodic, semi-clean and CJ elements

The following lemma is part of folklore.

Lemma

Let $a \in R$ be periodic say $a^m = a^l$ with m < l. We have

9 for all
$$k \in \mathbb{N}$$
 and any $j \ge m$, $a^j = a^{j+k(l-m)}$.

a is a sum of a potent and a nilpotent element.

a is strongly clean.

Proof.

(1) We have
$$a^m = a^m a^{l-m} = a^m a^{2(l-m)} = \cdots = a^{m+k(l-m)}$$
 and
hence also $a^j = a^{j+k(l-m)}$ for any $j \ge m$ and all $k \in \mathbb{N}$.
(2) Using (1), we have
 $(a^{m(l-m)})^2 = a^{m(l-m)+m(l-m)} = a^{m(l-m)}$.

Theorem

Let
$$p = \sum_{i=0}^{n} p_i x^i \in R[x]$$
 be such that
a $p^l = p^m$, for some $l > m$,
b $[p_0, p_i] = 0$, for every $0 \le i \le n$,
c $(l-m)p_i \ne 0$ if $p_i \ne 0$, for every $0 \le i \le n$.
Then $p^{m^2} = p_0^{m^2} \in R$.

ヘロト ヘロト ヘビト ヘビト

æ

Theorem

Let
$$p = \sum_{i=0}^{n} p_i x^i \in R[x]$$
 be such that
1 $p^l = p^m$, for some $l > m$,
2 $[p_0, p_i] = 0$, for every $0 \le i \le n$,
3 $(l-m)p_i \ne 0$ if $p_i \ne 0$, for every $0 \le i \le n$.
Then $p^{m^2} = p_0^{m^2} \in R$.

The next corollary generalizes a result known for idempotents.

э

Theorem

Let
$$p = \sum_{i=0}^{n} p_i x^i \in R[x]$$
 be such that
1 $p^l = p^m$, for some $l > m$,
2 $[p_0, p_i] = 0$, for every $0 \le i \le n$,
3 $(l-m)p_i \ne 0$ if $p_i \ne 0$, for every $0 \le i \le n$
Then $p^{m^2} = p_0^{m^2} \in R$.

The next corollary generalizes a result known for idempotents.

Corollary

If m = 1 in the above theorem, under the same conditions we get that the potent polynomials $p \in R[x]$ belong to the base ring R.

Remark

The polynomial $p(x) = 4x + 1 \in (\mathbb{Z}/8\mathbb{Z})[x]$ is such that $p(x)^3 = p(x)$. This shows that the condition on the coefficients cannot be omitted.

Guanglin MA Nanjing University of Information Science and Tech Periodic, semi-clean and CJ elements

Proposition

Let $p(x) = \sum_{i=0}^{n} p_i x^i \in Per(R[x])$ be such that $p_i p_0 = p_0 p_i$ for $1 \le i \le n$. Suppose there exists a natural number q such that $qp_i = 0$ for $1 \le i \le n$. Then $p - p_0$ is nilpotent.

Proposition

Let $p(x) = \sum_{i=0}^{n} p_i x^i \in Per(R[x])$ be such that $p_i p_0 = p_0 p_i$ for $1 \le i \le n$. Suppose there exists a natural number q such that $qp_i = 0$ for $1 \le i \le n$. Then $p - p_0$ is nilpotent.

Remark

The above results admit generalizations for \mathbb{N} -graded rings. $R = \bigoplus_{i \in \mathbb{N}} R_i$ where R_i are additive groups and the product of R is such that $R_i R_j \subseteq R_{i+j}$. In particular, we can get results on Per(S)when $S = R[x_1, \ldots, x_n]$. The following theorems are classical:

Guanglin MA Nanjing University of Information Science and Tech Periodic, semi-clean and CJ elements

The following theorems are classical:

Theorem

A ring R is periodic if and only if the followings hold:

- **1** *R* is of positive characteristic,
- R is strongly clean,
- The invertible elements of R are roots of unity.

The following theorems are classical:

Theorem

A ring R is periodic if and only if the followings hold:

- **1** *R* is of positive characteristic,
- Q R is strongly clean,
- The invertible elements of R are roots of unity.

Theorem

A ring R is periodic if and only if R/J(R) is periodic and J(R) is nil.

Let us mention some important results related to matrices over periodic rings.

Theorem (A. Bouzidi, A. Cherchem, A. Leroy; 2020)

If R is a periodic ring then $M_n(R)$ is also periodic in the following cases:

- **1** *R* is Artinian.
- **2** R is right (left) Noetherian and J(R) is nilpotent.
- In the second second

A ring R is 2-primal if the set of its nilpotent elements coincide with the prime radical. i.e. $Nil(R) = P(R) = \bigcap_{P \text{ prime}} P$.

A ring R is 2-primal if the set of its nilpotent elements coincide with the prime radical. i.e. $Nil(R) = P(R) = \bigcap_{P \text{ prime}} P$.

Corollary

If R is 2-primal and $\sum a_i x^i \in Per(R[X])$, then $a_0 \in Per(R)$ and $a_i \in Nil(R)$ for $i \ge 1$. Thus in this case we have $Per(R[x]) \subseteq Per(R) + Nil(R)[x]x$.

Example

Suppose $R = \mathbb{Z}[y]/(y^2)$. *R* is a commutative ring hence 2-primal. Consider $1 + yx \in R[x]$, 1 is perodic and *y* is nilpotent. But $(1 + yx)^n = 1 + nyx$ is not periodic for any $n \in \mathbb{N}$. This shows the converse inclusion of the above does not always hold.

伺 ト イヨト イヨ

An element $a \in R$ is semiclean if there exist a periodic element $p \in R$ and a unit $u \in U(R)$ such that a = p + u. The set Scl(R) denotes the set of semiclean elements. The ring R is semiclean if Scl(R) = R.

An element $a \in R$ is semiclean if there exist a periodic element $p \in R$ and a unit $u \in U(R)$ such that a = p + u. The set Scl(R) denotes the set of semiclean elements. The ring R is semiclean if Scl(R) = R.

Proposition

- $I Scl(R) + J(R) \subseteq Scl(R).$
- $Scl(R[x]) \cap R = Scl(R).$
- If R is a domain, then the semiclean elements are units or sum of two units.

Among the following equivalent statements, 3 and 4 were given by Kanwar, Leroy, and Matczuk.

Proposition

Let R be a ring, then the following are equivalent:

- R is 2 primal.
- R[x] is 2 primal.

•
$$Cl(R[x]) = Cl(R) + Nil(R)[x]x.$$

•
$$U(R[x]) = U(R) + Nil(R)[x]x.$$

Scl(R[x]) = Scl(R) + Nil(R)[x]x.

Definitions

A ring R such that its elements can be written as c + x

• where c is central and x is invertible is CU (e.g.clean abelian).

Definitions

A ring R such that its elements can be written as c + x

- where c is central and x is invertible is CU (e.g.clean abelian).
- Where c is central and x is nilpotent is CN (e.g. nil clean abelian).

Definitions

A ring R such that its elements can be written as c + x

- where c is central and x is invertible is CU (e.g.clean abelian).
- where c is central and x is nilpotent is CN (e.g. nil clean abelian).
- So where c is central and x is in J(R) is CJ (e.g J-clean abelian).

Definitions

A ring R such that its elements can be written as c + x

- where c is central and x is invertible is CU (e.g.clean abelian).
- where c is central and x is nilpotent is CN (e.g. nil clean abelian).
- So where c is central and x is in J(R) is CJ (e.g J-clean abelian).

We have the following easy relations between these rings.

$$CN \Rightarrow CU, \qquad CJ \Rightarrow CU$$

Examples

- (1) Every commutative ring is CJ.
- (2) Every homomorphic image of a CJ ring is CJ.
- (3) C + J is a subring of R stable by automorphisms of R.
- (4) C(R[x]) + J(R[x]) = C(R)[x] + N'[x] where $N' = J(R[x]) \cap R$ is a nil ideal of R. (Amitsur's result, see T.Y.Lam's book "first course" Theorem 5.10).

(5) CJ and CN rings are different notions for examples consider $R = k[[x]][[t; \sigma]]$ where σ is the *k*-endomorphism of k[[x]] defined by $\sigma(x) = x^2$. The center of *R* is *k* and the Jacobson radical of *R* is the ideal generated by *x* and *t*. Hence *R* is CJ. But this ring is not CN since it is a noncommutative domain.

Let us mention some results related to CJ rings.

- **1** If *R* is CJ then *R* is Dedekind finite.
- **2** If *R* is CJ then $Nil(R) \subseteq J(R)$.
- **③** The subring C + J is a CJ ring.
- If R[x] is a CJ ring, then R satisfies the Köthe conjecture.

THANK YOU !

Guanglin MA Nanjing University of Information Science and Tech Periodic, semi-clean and CJ elements

• • = • • = •

э