

## Periodic, semi-clean and CJ elements

Guanglin MA
Nanjing University of Information Science and Technology, China

Joint work with A. Leroy, M. Nasernejad, and Y. Wang
NCRA VIII, Lens August 2023
Lens, August

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.
(2) idempotent if $a^{2}=a, E(R):=\left\{a \in R \mid a^{2}=a\right\}$.

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.
(2) idempotent if $a^{2}=a, E(R):=\left\{a \in R \mid a^{2}=a\right\}$.
(3) nilpotent if $\exists n \in \mathbb{N} \backslash\{0\}$ s.t. $a^{n}=0$. The set of nilpotent elements is denoted $\operatorname{Nil}(R)$.

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.
(2) idempotent if $a^{2}=a, E(R):=\left\{a \in R \mid a^{2}=a\right\}$.
(3) nilpotent if $\exists n \in \mathbb{N} \backslash\{0\}$ s.t. $a^{n}=0$. The set of nilpotent elements is denoted $\operatorname{Nil}(R)$.
(9) (M. Chacron) periodic if $\exists m<I \in \mathbb{N}$ s.t. $a^{\prime}=a^{m}$. $\operatorname{Per}(R)$. If $m=1$ we say a is potent.

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.
(2) idempotent if $a^{2}=a, E(R):=\left\{a \in R \mid a^{2}=a\right\}$.
(3) nilpotent if $\exists n \in \mathbb{N} \backslash\{0\}$ s.t. $a^{n}=0$. The set of nilpotent elements is denoted $\operatorname{Nil}(R)$.
(9) (M. Chacron) periodic if $\exists m<I \in \mathbb{N}$ s.t. $a^{\prime}=a^{m}$. $\operatorname{Per}(R)$. If $m=1$ we say a is potent.
(5) clean if $\exists e \in E(R), \exists u \in U(R)$ s.t. $a=e+u$. $C I(R)$.

## Notations and Definitions

$R$ denotes an associative ring with unity.

## Definitions

An element $a$ in a ring $R$ is
(1) invertible if $\exists b \in R$ s.t. $a b=b a=1$. The set of invertible elements is denoted $U(R)$.
(2) idempotent if $a^{2}=a, E(R):=\left\{a \in R \mid a^{2}=a\right\}$.
(3) nilpotent if $\exists n \in \mathbb{N} \backslash\{0\}$ s.t. $a^{n}=0$. The set of nilpotent elements is denoted $\operatorname{Nil}(R)$.
(9) (M. Chacron) periodic if $\exists m<I \in \mathbb{N}$ s.t. $a^{\prime}=a^{m}$. $\operatorname{Per}(R)$. If $m=1$ we say a is potent.
(3) clean if $\exists e \in E(R), \exists u \in U(R)$ s.t. $a=e+u$. $C l(R)$.
(0) semiclean $\exists p \in \operatorname{Per}(R), \exists u \in U(R)$ s.t. $a=p+u$. $\operatorname{Scl}(R)$
(1) strongly clean if $a=e+u$ is clean and $u e=e u$.

## Properties of periodic elements

The following lemma is part of folklore.

## Properties of periodic elements

The following lemma is part of folklore.

## Lemma

Let $a \in R$ be periodic say $a^{m}=a^{\prime}$ with $m<1$. We have
(1) for all $k \in \mathbb{N}$ and any $j \geq m, a^{j}=a^{j+k(I-m)}$.
(2) $a^{m(I-m)}$ is an idempotent.
(3) $a$ is a sum of a potent and a nilpotent element.
(4) $a$ is strongly clean.

## Properties of periodic elements

The following lemma is part of folklore.

## Lemma

Let $a \in R$ be periodic say $a^{m}=a^{\prime}$ with $m<I$. We have
(1) for all $k \in \mathbb{N}$ and any $j \geq m, a^{j}=a^{j+k(I-m)}$.
(2) $a^{m(I-m)}$ is an idempotent.
(3) $a$ is a sum of a potent and a nilpotent element.
(1) a is strongly clean.

## Proof.

(1) We have $a^{m}=a^{m} a^{I-m}=a^{m} a^{2(I-m)}=\cdots=a^{m+k(I-m)}$ and hence also $a^{j}=a^{j+k(I-m)}$ for any $j \geq m$ and all $k \in \mathbb{N}$.

## Properties of periodic elements

The following lemma is part of folklore.

## Lemma

Let $a \in R$ be periodic say $a^{m}=a^{\prime}$ with $m<1$. We have
(1) for all $k \in \mathbb{N}$ and any $j \geq m, a^{j}=a^{j+k(I-m)}$.
(2) $a^{m(I-m)}$ is an idempotent.
(3) $a$ is a sum of a potent and a nilpotent element.
(4) $a$ is strongly clean.

## Proof.

(1) We have $a^{m}=a^{m} a^{I-m}=a^{m} a^{2(I-m)}=\cdots=a^{m+k(I-m)}$ and hence also $a^{j}=a^{j+k(I-m)}$ for any $j \geq m$ and all $k \in \mathbb{N}$.
(2) Using (1), we have
$\left(a^{m(I-m)}\right)^{2}=a^{m(I-m)+m(I-m)}=a^{m(I-m)}$.

## Theorem

Let $p=\sum_{i=0}^{n} p_{i} x^{i} \in R[x]$ be such that
(1) $p^{\prime}=p^{m}$, for some $l>m$,
(2) $\left[p_{0}, p_{i}\right]=0$, for every $0 \leq i \leq n$,
(3) $(I-m) p_{i} \neq 0$ if $p_{i} \neq 0$, for every $0 \leq i \leq n$.

Then $p^{m^{2}}=p_{0}^{m^{2}} \in R$.

## Theorem

Let $p=\sum_{i=0}^{n} p_{i} x^{i} \in R[x]$ be such that
(1) $p^{\prime}=p^{m}$, for some $l>m$,
(2) $\left[p_{0}, p_{i}\right]=0$, for every $0 \leq i \leq n$,
(3) $(I-m) p_{i} \neq 0$ if $p_{i} \neq 0$, for every $0 \leq i \leq n$.

Then $p^{m^{2}}=p_{0}^{m^{2}} \in R$.
The next corollary generalizes a result known for idempotents.

## Theorem

Let $p=\sum_{i=0}^{n} p_{i} x^{i} \in R[x]$ be such that
(1) $p^{\prime}=p^{m}$, for some $l>m$,
(2) $\left[p_{0}, p_{i}\right]=0$, for every $0 \leq i \leq n$,
(3) $(I-m) p_{i} \neq 0$ if $p_{i} \neq 0$, for every $0 \leq i \leq n$.

Then $p^{m^{2}}=p_{0}^{m^{2}} \in R$.
The next corollary generalizes a result known for idempotents.

## Corollary

If $m=1$ in the above theorem, under the same conditions we get that the potent polynomials $p \in R[x]$ belong to the base ring $R$.

## Remark

The polynomial $p(x)=4 x+1 \in(\mathbb{Z} / 8 \mathbb{Z})[x]$ is such that $p(x)^{3}=p(x)$. This shows that the condition on the coefficients cannot be omitted.

## Proposition

Let $p(x)=\sum_{i=0}^{n} p_{i} x^{i} \in \operatorname{Per}(R[x])$ be such that $p_{i} p_{0}=p_{0} p_{i}$ for $1 \leq i \leq n$. Suppose there exists a natural number $q$ such that $q p_{i}=0$ for $1 \leq i \leq n$. Then $p-p_{0}$ is nilpotent.

## Proposition

Let $p(x)=\sum_{i=0}^{n} p_{i} x^{i} \in \operatorname{Per}(R[x])$ be such that $p_{i} p_{0}=p_{0} p_{i}$ for $1 \leq i \leq n$. Suppose there exists a natural number $q$ such that $q p_{i}=0$ for $1 \leq i \leq n$. Then $p-p_{0}$ is nilpotent.

## Remark

The above results admit generalizations for $\mathbb{N}$-graded rings. $R=\oplus_{i \in \mathbb{N}} R_{i}$ where $R_{i}$ are additive groups and the product of $R$ is such that $R_{i} R_{j} \subseteq R_{i+j}$. In particular, we can get results on $\operatorname{Per}(S)$ when $S=R\left[x_{1}, \ldots, x_{n}\right]$.

## The following theorems are classical:

The following theorems are classical:
Theorem
A ring $R$ is periodic if and only if the followings hold:
(1) $R$ is of positive characteristic,
(2) $R$ is strongly clean,
(3) The invertible elements of $R$ are roots of unity.

The following theorems are classical:

## Theorem

A ring $R$ is periodic if and only if the followings hold:
(1) $R$ is of positive characteristic,
(2) $R$ is strongly clean,
(3) The invertible elements of $R$ are roots of unity.

## Theorem

A ring $R$ is periodic if and only if $R / J(R)$ is periodic and $J(R)$ is nil.

## Matrices over periodic rings

Let us mention some important results related to matrices over periodic rings.

Theorem (A. Bouzidi, A. Cherchem, A. Leroy; 2020)
If $R$ is a periodic ring then $M_{n}(R)$ is also periodic in the following cases:
(1) $R$ is Artinian.
(2) $R$ is right (left) Noetherian and $J(R)$ is nilpotent.
(3) $R$ is P.I.

## Definition

A ring $R$ is 2-primal if the set of its nilpotent elements coincide with the prime radical. i.e. $\operatorname{Nil}(R)=P(R)=\cap_{P \text { prime }} P$.

## Definition

A ring $R$ is 2-primal if the set of its nilpotent elements coincide with the prime radical. i.e. $\operatorname{Nil}(R)=P(R)=\cap_{P \text { prime }} P$.

## Corollary

If $R$ is 2-primal and $\sum a_{i} x^{i} \in \operatorname{Per}(R[X])$, then $a_{0} \in \operatorname{Per}(R)$ and $a_{i} \in \operatorname{Nil}(R)$ for $i \geq 1$. Thus in this case we have $\operatorname{Per}(R[x]) \subseteq \operatorname{Per}(R)+\operatorname{Nil}(R)[x] x$.

## Example

Suppose $R=\mathbb{Z}[y] /\left(y^{2}\right) . R$ is a commutative ring hence 2 -primal. Consider $1+y x \in R[x], 1$ is perodic and $y$ is nilpotent. But $(1+y x)^{n}=1+n y x$ is not periodic for any $n \in \mathbb{N}$. This shows the converse inclusion of the above does not always hold.

## Definition

An element $a \in R$ is semiclean if there exist a periodic element $p \in R$ and a unit $u \in U(R)$ such that $a=p+u$. The set $\operatorname{ScI}(R)$ denotes the set of semiclean elements. The ring $R$ is semiclean if $\operatorname{Scl}(R)=R$.

## Definition

An element $a \in R$ is semiclean if there exist a periodic element $p \in R$ and a unit $u \in U(R)$ such that $a=p+u$. The set $\operatorname{ScI}(R)$ denotes the set of semiclean elements. The ring $R$ is semiclean if $\operatorname{Scl}(R)=R$.

## Proposition

(1) $\operatorname{Scl}(R)+J(R) \subseteq \operatorname{Scl}(R)$.
(2) $\operatorname{Scl}(R[x]) \cap R=\operatorname{Scl}(R)$.
(3) If $R$ is a domain, then the semiclean elements are units or sum of two units.

## 2-primal

Among the following equivalent statements, 3 and 4 were given by Kanwar, Leroy, and Matczuk.

## Proposition

Let $R$ be a ring, then the following are equivalent:
(1) $R$ is 2 primal.
(2) $R[x]$ is 2 primal.
(3) $C l(R[x])=C l(R)+\operatorname{Nil}(R)[x] x$.
(4) $U(R[x])=U(R)+\operatorname{Nil}(R)[x] x$.
(5) $\operatorname{Scl}(R[x])=\operatorname{Scl}(R)+\operatorname{Nil}(R)[x] x$.

A ring is exchange if the idempotents can be lifted through any one sided ideal (Nicholson). An abelian exchange is always a clean (abelian) ring and hence every element is a sum of a central element and a unit. These rings are called CU.

A ring is exchange if the idempotents can be lifted through any one sided ideal (Nicholson). An abelian exchange is always a clean (abelian) ring and hence every element is a sum of a central element and a unit. These rings are called CU.

## Definitions

A ring $R$ such that its elements can be written as $c+x$
(1) where $c$ is central and $x$ is invertible is CU (e.g.clean abelian).

A ring is exchange if the idempotents can be lifted through any one sided ideal (Nicholson). An abelian exchange is always a clean (abelian) ring and hence every element is a sum of a central element and a unit. These rings are called CU.

## Definitions

A ring $R$ such that its elements can be written as $c+x$
(1) where $c$ is central and $x$ is invertible is CU (e.g.clean abelian).
(2) where $c$ is central and $x$ is nilpotent is CN (e.g. nil clean abelian).

A ring is exchange if the idempotents can be lifted through any one sided ideal (Nicholson). An abelian exchange is always a clean (abelian) ring and hence every element is a sum of a central element and a unit. These rings are called CU.

## Definitions

A ring $R$ such that its elements can be written as $c+x$
(1) where $c$ is central and $x$ is invertible is CU (e.g.clean abelian).
(2) where $c$ is central and $x$ is nilpotent is CN (e.g. nil clean abelian).
(3) where $c$ is central and $x$ is in $J(R)$ is CJ (e.g J-clean abelian).

A ring is exchange if the idempotents can be lifted through any one sided ideal (Nicholson). An abelian exchange is always a clean (abelian) ring and hence every element is a sum of a central element and a unit. These rings are called CU.

## Definitions

A ring $R$ such that its elements can be written as $c+x$
(1) where $c$ is central and $x$ is invertible is CU (e.g.clean abelian).
(2) where $c$ is central and $x$ is nilpotent is CN (e.g. nil clean abelian).
(3) where $c$ is central and $x$ is in $J(R)$ is CJ (e.g J-clean abelian).

We have the following easy relations between these rings.

$$
C N \Rightarrow C U, \quad C J \Rightarrow C U
$$

## Examples

(1) Every commutative ring is CJ .
(2) Every homomorphic image of a $C J$ ring is $C J$.
(3) $C+J$ is a subring of $R$ stable by automorphisms of $R$.
(4) $C(R[x])+J(R[x])=C(R)[x]+N^{\prime}[x]$ where $N^{\prime}=J(R[x]) \cap R$ is a nil ideal of $R$. (Amitsur's result, see T.Y.Lam's book "first course" Theorem 5.10).
(5) CJ and CN rings are different notions for examples consider $R=k[[x]][[t ; \sigma]]$ where $\sigma$ is the $k$-endomorphism of $k[[x]]$ defined by $\sigma(x)=x^{2}$. The center of $R$ is $k$ and the Jacobson radical of $R$ is the ideal generated by $x$ and $t$. Hence $R$ is CJ. But this ring is not CN since it is a noncommutative domain.

Let us mention some results related to CJ rings.
(1) If $R$ is CJ then $R$ is Dedekind finite.
(2) If $R$ is CJ then $\operatorname{Nil}(R) \subseteq J(R)$.
(3) The subring $C+J$ is a $C J$ ring.
(9) If $R[x]$ is a CJ ring, then $R$ satisfies the Köthe conjecture.

## THANK YOU!

